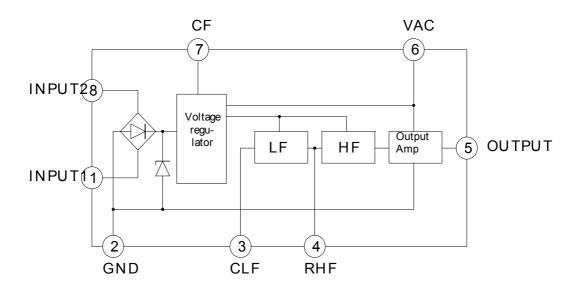
TELEPHONE TONE RINGER WITH BRIDGE DIODE.

The IL2418N is a monolithic integrated circuit telephone tone ringer diode, when coupled with an appropriate transducer, it replaces the electromechanical bell. This device is designed for use with either a piezo transducer or an inexpensive transformer coupled


speaker to produce a pleasing tone composed of a high freguency (f_{VH}) alternating with a low freguency (f_L) resulting in a warble freguency. The supply voltage is obtained from the AC ring signal and the circuit is designed so that noise on the line or variation of the ringing signal can not affect correct operation of the device..

8

Features

- On chip high voltage full wave diode bridge rectifier
- Low current consumption, in order to allow the parallel operation of the 4 devices
- Low external component count
- Tone and switching freguencies adjustable by external components
- High noise immunity due to built-in voltage current hysteresis
- Activation voltage adjustable
- Internal zener diodes to protect against over voltages
- Ringer impedance adjustable with external components.

Block diagram

PACKAGE

8 - DIP

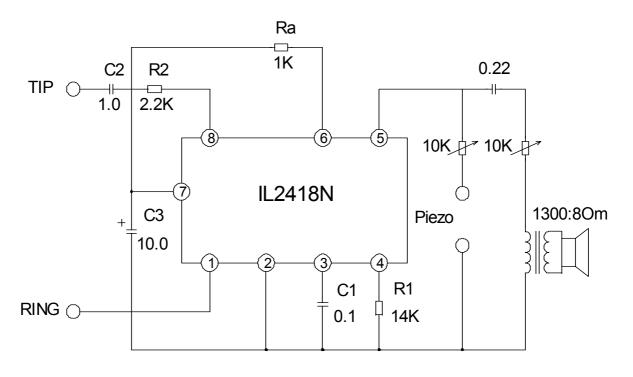
 $T_A = -40 ... +70 °C$

IL2418

ABSOLUTE MAXIMUM RATINGS (T_A=25°C)

Symbol	Characteristic	Value	Unit
V _{TP}	Calling Voltage (f=50Hz) Continuous	120	Vrms
V_{TP}	Calling Voltage (f=50Hz) 5 Sec ON/10 Sec OFF.	200	Vrms
I _{CC}	Supply Current.	22	mA
T _{OP}	Operating Temperature.	-40 +70	°C
T _{stg}	Storage and Junction Temperature.	-65 + 150	°C

ELECTRICAL CHARACTERISTICS (Ta=25°C)


Symbol	Characteristic	Test Condition	Min	Тур	Max	Unit
V _{CC}	Supply Voltage	Pin 7 V _{CC} Pin 2 V=0V	-	-	26	V
I _{cc}	Current Consumption without Load	V_S =8.8 to 26V Pin 7 V_{CC} Pin 0 V=0V	-	1.5	1.8	mA
V _{ON}	Activation Voltage	Pin 7 V _{ON} Pin 2 V=0V	12.2		13	V
V_{ONR}	Activation Voltage Range	$R_A = 1 \Omega$ (Pin 7 V_{ONR} Pin 2 $V=0V$)	8		10	V
V_{SUS}	Sustaining Voltage	Pin 7 V _{SUS} Pin 2 V=0V	8		8.8	V
R_D	Differential Resistance in Off Condition	(Pin 1 , 8)	6.4			kΩ
V _{OUT}	Output Voltage Swing	(Pin 5) Pin 7 V _{CC} =26V Pin 2 V=0V		Vcc-3		V
I _{OUT}	Short Circuit Current	(Pin 5) Pin 7 V _{CC} = 26V Pin 2 V=0V		35		mA

IL2418

AC OPERATION

Characteristic	Symbol	Test Condition	Min	Тур.	Max	Unit
Output		Pin 7 V _{CC} =26V				
Frequencies		Pin 2 V=0V,				
		R1=14êΩ,				
	f _{H1}	V _{CC} =0V,		2300		Hz
f _{H1}	f _{H2}	V _{CC} =6V		1700		Hz
f _{H2}						
f _{H1} Range		R1=27K Ω to 1.7 K Ω	0.1		15	KHz
Sweep Frequency	f _L	Pin 7 V _{CC} =26V		10		Hz
		Pin 2 V=0V,				
		R ₁ =14êΩ				
		C ₁ =100nF				

TEST AND APPLICATION CIRCUT

 $\begin{array}{c} f_{H1}{=}3.22x10^4/R1(k\Omega) \\ f_{H2}{=}(5/7)xf_{H1} \\ f_{L}{=}1000/C1(nF) \end{array}$