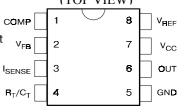
July 1995 - revised July 2002

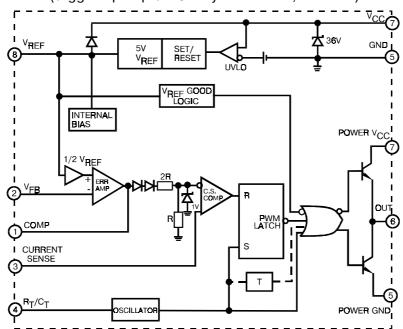

DESCRIPTION

 $KA3842/43/44/45 \ \ \text{are fixed frequency current mode PWM}$ controller. They are specially designed for OFF-Line and DC to DC converter applications with a minimal external components. Internally implemented circuits include a trimmed

oscillator for precise duty cycle control, a temperature compensated reference, high gain error amplifier, current sensing comparator, and a high current totempole output ideally suited for driving a power MOSFET. Protection circuitry includes built undervoltage lockout and current limiting.

The UC3842A(AM) and UC3844A(AM) have UVLO thresholds of 16 V (on) and 10 V (off). The corresponding thresholds for the UC3843A(AM)/45A(AM) are 8.4V (on) and 7.6V (off). The UC3842A(AM) and UC3843A(AM) can operate within 100% duty cycle. The UC3844A(AM) and UC3845A(AM) can operate within 50% duty cycle. The UC384XA(AM) has Start-Up Current 0.17mA (typ).

PIN CONNECTION (TOP VIEW)



FEATURES

- · Low Start-Up and Operating Current
- High Current Totem Pole Output
- Undervoltage Lockout With Hysteresis
- Operating Frequency Up To 300KHz (384XA) 500KHz (384XAM)

BLOCK DIAGRAM

(toggle flip flop used only in UC3844, UC3845)

Absolute Maximum Ratings

Characteristic	Symbol	Value	Unit
Supply Voltage (low impedance source)	V _{CC}	30	V
Output Current	Ιο	±1	А
Input Voltage (Analog Inputs pins 2,3)	VI	-0.3 to 5.5	V
Error Amp Output Sink Current	I _{SINK (E.A)}	10	mA
Power Dissipation (T _A =25 ⁰ C)	Po	1	W
Storage Temperature Range	Tstg	-65 to150	°C
Lead Temperature (soldering 5 sec.)	TL	260	°C

KA3842/43/44/45

July 1995 - revised July 2002

Electrical characteristics (* V_{CC} =15V, R_T =10 $k\Omega$, C_T =3.3nF, T_A =0 0C to +70 0C , unless otherwise

Characteristics	Symbol	Test Condition		Min	Тур	Max	Unit	
Reference Section		•			•		•	
Reference Output Voltage	V_{REF}	$T_J = 25$ °C, $I_{REF} = 1$ mA		4.9	5.0	5.1	V	
Line Regulation	ΔV_{REF}	12V ≤ V _{CC} ≤ 25 V			6.0	20	mV	
Load Regulation	ΔV_{REF}	1 mA ≤ I _{REF} ≤ 20mA			6.0	25		
Short Circuit Output Current	I _{SC}	$T_A = 25^{\circ}C$			-100	-180	mA	
Oscillator Section				· ·	I.	u .	1	
Ossillation Fraguency	f	$T_J = 25^{\circ}C$	384XA	47	50	57	KHz	
Oscillation Frequency			384XAM	47	52	57	NΠZ	
Frequency Change with Voltage	$\Delta f/\Delta V_{CC}$	$12V \le V_{CC} \le 25 V$			0.05	1.0	%	
Oscillator Amplitude	$V_{(OSC)}$	(peak to peak)	(peak to peak)		1.6		V	
Error Amplifier Section								
Input Bias Current	I _{BIAS}	V _{FB} =3V			-0.1	-2	μА	
Input Voltage	$V_{I(E.A)}$	$V_{pin1} = 2.5V$		2.42	2.5	2.58	V	
Open Loop Voltage Gain	A_{VOL}	$2V \le V_0 \le 4V$		65	90		dB	
Power Supply Rejection Ratio	PSRR	12V ≤ V _{CC} ≤ 25		60	70		ub	
Output Sink Current	I _{SINK}	$V_{pin2} = 2.7V, V_{pin1} = 1.1V$		2	7		mA	
Output Source Current	I _{SOURCE}	$V_{pin2} = 2.3V, V_{pin1} = 5V$		-0.5	-1.0		mA	
High Output Voltage	V_{OH}	$V_{pin2} = 2.3V, F$	$R_L = 15K\Omega$ to GND	5.0	6.0		V	
Low Output Voltage	V_{OL}	$V_{pin2} = 2.7V$, $R_L = 15K\Omega$ to PIN 8		0.8	1.1			
Current Sense Section								
Gain	G_V	(Note 1 & 2)		2.85	3.0	3.15	V/V	
Maximum Input Signal	$V_{I(MAX)}$	V _{pin1} = 5V (Note1)		0.9	1.0	1.1	V	
Supply Voltage Rejection	SVR	12V ≤ V _{CC} ≤ 25 V (Note 1)			70		dB	
Input Bias Current	I _{BIAS}	$V_{pin3} = 3V$			-3.0	-10	μΑ	
Output Section								
Low Output Voltage	V_{OL}	$I_{SINK} = 20 \text{ mA}$			0.08	0.4		
		$I_{SINK} = 200 \text{ m/s}$	4		1.4	2.2	V	
High Output Voltage	V_{OH}	$I_{SINK} = 20 \text{ mA}$		13	13.5			
		$I_{SINK} = 200 \text{ m/s}$		12	13.0			
Rise Time	t _R	$T_J = 25^{\circ}C, C_L = 1nF \text{ (Note 3)}$			45	150	nS	
Fall Time	t _F	$T_J = 25^{\circ}C, C_L$	= 1nF (Note 3)		35	150		
Undervoltage Lockout Section		1		.		·	1	
Start Theshold	$V_{TH(ST)}$	UC3842A(AM)	, ,	14.5	16.0	17.5	V	
Min. Operation Valters	\/	UC3843A(AM)		7.8	8.4	9.0		
Min. Operating Voltage	$V_{OPR(min)}$	UC3842A(AM)	· · · · · · · · · · · · · · · · · · ·	8.5	10	11.5	V	
(After Turn On) PWM Section		UC3843A(AM)/45A(AM)		7.0	7.6	8.2		
		UC3842A(AM)	//2//////	95	97	100	1	
Max. Duty Cycle	$D_{(MAX)}$	UC3842A(AM)	· , ,	47	48	100 50	%	
Min. Duty Cycle	D _(MAX)	JUJU44A(AIVI)	/TOA(AIVI)	+1	40	0	%	
Total Standby Current	□(MAX)	1		1		U	l	
Start-Up Current	I _{ST}	UC384XA(AM)			0.17	0.3		
Operating Supply Current		$V_{\text{pin}3} = V_{\text{pin}2} =$			13	17	mA	
Sperating Supply Surrent	I _{CC (OPR)}	ypin3 -vpin2 —	- V	30	10	17	V	

^{*} Adjust V_{CC} above the start threshold before setting it to 15V. Note 1: Parameter measured at trip point of latch with V_{pin2} =0. Note 2: Gain defined as $A=\Delta V_{pin1}/\Delta V_{pin3}$; $0 \le V_{pin3} \le 0.8V$. Note 3: These parameters, although guaranteed, are not 100% tested in production.

July 1995 - revised July 2002

PIN FUNCTION

N	FUNCTION	DESCRIPTION		
1	COMP	This pin is the Error Amplifier output and is made for loop compensation.		
2	V_{FB}	This is the inverting input of the Error Amplifier. It is normally connected to the		
		switching power supply output through a resistor divider.		
3	I _{SENSE}	A voltage proportional to inductor current is connected to this input. The PWM		
		uses this information to terminate the output switch conduction.		
4	R _T /C _T	The oscillator frequency and maximum Output duty cycle are programmed by		
		connecting resistor R _T to V _{ref} and capacitor C _T to ground.		
5	GROUND	This pin is the combined control circuitry and power ground.		
6	OUTPUT	This output directly drives the gate of a power MOSFET. Peak currents up to 1A		
		are sourced and sink by this pin.		
7	V_{CC}	This pin is the positive supply of the integrated circuit.		
8	V_{ref}	This is the reference output. It provides charging current for capacitor C _T through		
		resistor R _T .		

APPLICATION INFORMATION

Figure 1. Error Amp Configuration

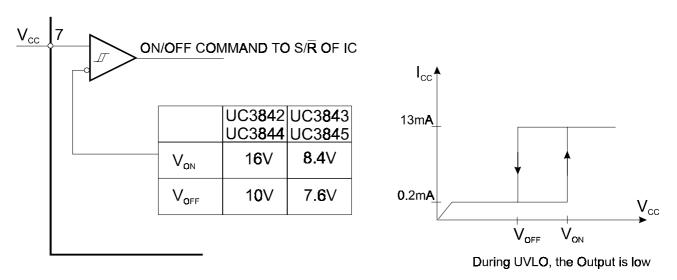
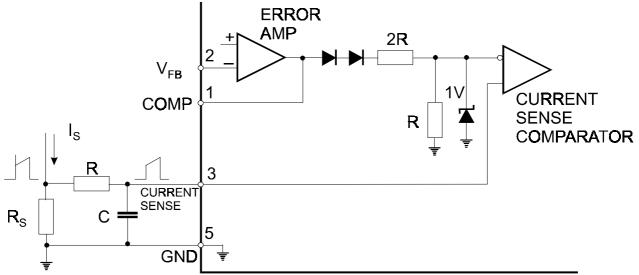



Figure 2. Undervoltage Lockout

July 1995 - revised July 2002

Peak current is determined by $I_{S \text{ max}} \approx \frac{1.0 \text{V}}{R_S}$

Figure 3. Current Sense Circuit

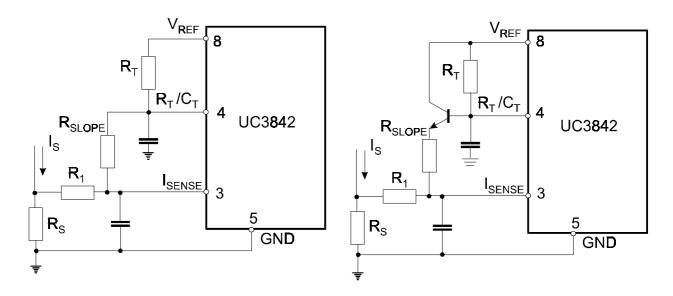
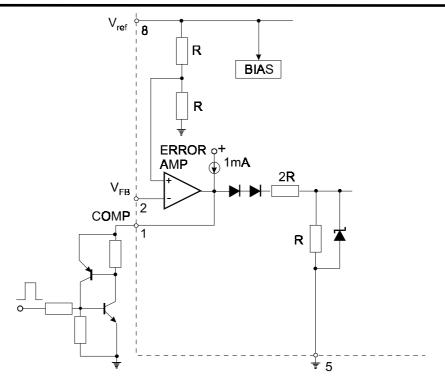
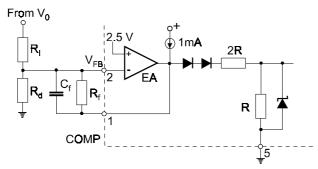
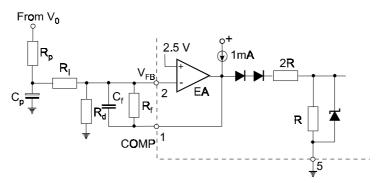



Figure 4. Slope Compensation Techniques


July 1995 - revised July 2002



SCR must be selected for a holding current of less than 0.5mA. The simple two transistor circuit can be used in place of the SCR as shown.

Figure 5. Latched Shutdown

Error Amp compensation circuit for stabilizing any current-mode topology except for boost and flyback converters operating with continuous inductor current.

Error Amp compensation circuit for stabilizing current-mode boost and flyback topologies operating with continuous inductor current.

Figure 6. Error Amplifier Compensation

July 1995 - revised July 2002

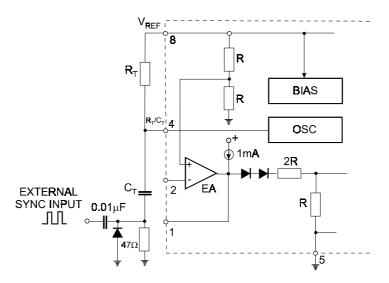


Figure 7. External Clock Synchronization

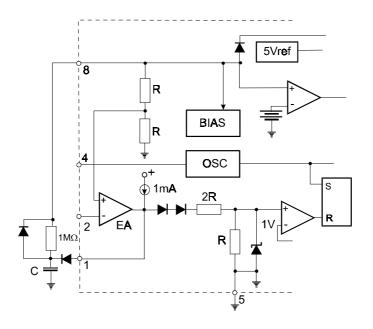


Figure 8. Soft-Start Circuit

TYPICAL PERFORMANCE CHARACTERISTICS

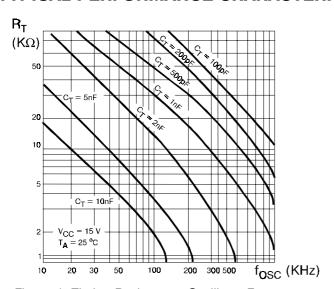


Figure 1. Timing Resistor vs. Oscillator Frequency

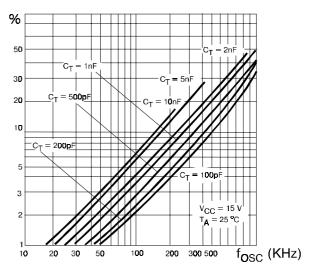


Figure 2. Output Dead-Time vs. Oscillator Frequency

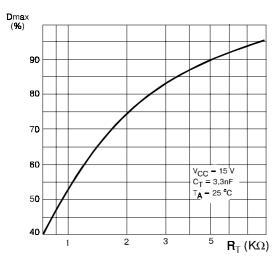


Figure 3. Maximum Output Duty Cycle vs. Timing Resistor (UC3842/43)

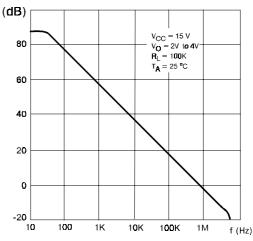


Figure 4. Error Amp Open-Loop Gain vs. Frequency

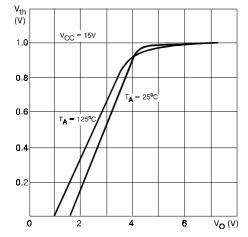


Figure 5. Current Sense Input Threshold vs. Error Amp Output Voltage

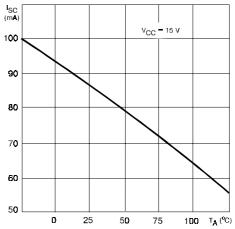


Figure 6. Reference Short Circuit Current vs. Temperature

July 1995 - revised July 2002

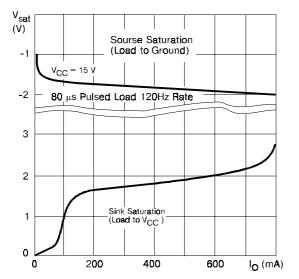


Figure 7. Output Saturation Voltage vs. Load Current $T_A = 25^{\circ}C$

Figure 8. Supply Current vs. Supply Voltage

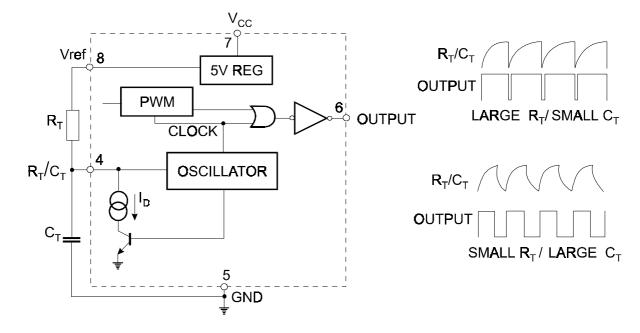
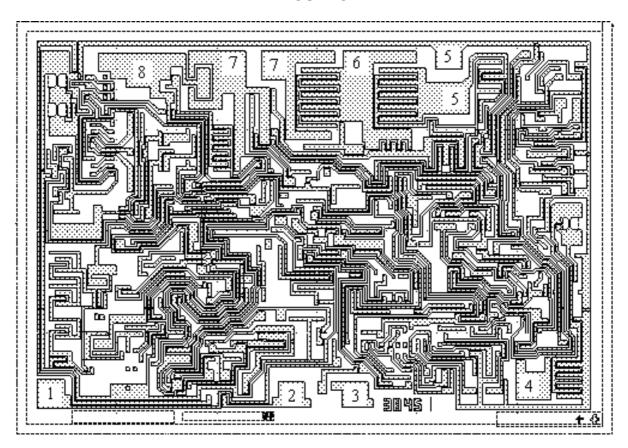



Figure 9. Oscillator and Output Waveforms

July 1995 - revised July 2002

PAD LOCATION

Chip size: 2.38 x 1.63 mm

Pad N	Pad Name	Coordinates μm		
I ad IV	i au name	Х	Υ	
1	COMP	90	110	
2	V_{FB}	1050	110	
3	I _{SENSE}	1310	110	
4	R_T/C_T	2000	150	
5	POWER GND	1700	1280	
6	GND	1680	1450	
7	OUT	1310	1410	
8	POWER V _{CC}	990	1410	
9	V_{CC}	815	1410	
10	V_REF	460	1390	