November 2013

SGL50N60RUFD 600 V, 50 A Short Circuit Rated IGBT

General Description

Fairchild's RUFD series of Insulated Gate Bipolar Transistors (IGBTs) provide low conduction and switching losses as well as short circuit ruggedness. The RUFD series is designed for applications such as motor control, uninterrupted power supplies (UPS) and general inverters where short circuit ruggedness is a required feature.

Features

- 50 A, 600 V, T_C = 100°C
- Low Saturation Voltage: $V_{CE}(sat) = 2.2 \text{ V} @ I_C = 50 \text{ A}$
- High Speed Switching
- High Input Impedance
- Short Circuit Rating

Applications

Motor Control, UPS, General Inverter.

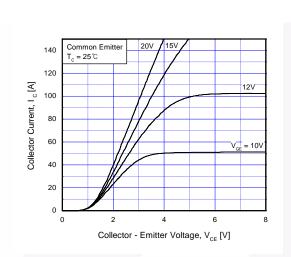
GCE

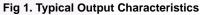
Absolute Maximum Ratings T_c = 25°C unless otherwise noted

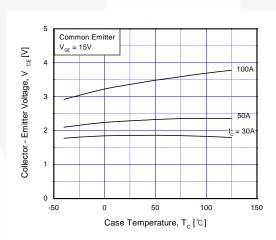
Symbol	Description		Ratings	Unit
V _{CES}	Collector-Emitter Voltage		600	V
V _{GES}	Gate-Emitter Voltage		± 20	V
	Collector Current	@ T _C = 25°C	80	А
I _C	Collector Current	@ T _C = 100°C	50	А
I _{CM (1)}	Pulsed Collector Current		150	А
l _F	Diode Continuous Forward Current	@ T _C = 25°C	60	А
	Diode Continuous Forward Current	@ T _C = 100°C	30	А
I _{FM}	Diode Maximum Forward Current		90	А
T _{SC}	Short Circuit Withstand Time	@ T _C = 100°C	10	us
P _D	Maximum Power Dissipation	@ T _C = 25°C	250	W
	Maximum Power Dissipation	@ T _C = 100°C	100	W
TJ	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C
TL	Maximum Lead Temp. for Soldering Purposes, 1/8" from Case for 5 Seconds		300	°C

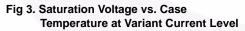
Notes : (1) Repetitive rating : Pulse width limited by max. junction temperature

Thermal Characteristics


Symbol	Parameter	Тур.	Max.	Unit
R _{0JC} (IGBT)	Thermal Resistance, Junction-to-Case		0.5	°C/W
$R_{\theta JC}(DIODE)$	Thermal Resistance, Junction-to-Case		1.0	°C/W
R _{0JA} Thermal Resistance, Junction-to-Ambient			25	°C/W


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Off Cha	racteristics					
BV _{CES}	Collector-Emitter Breakdown Voltage	V _{GE} = 0 V, I _C = 250 uA	600			V
ΔB _{VCES} / ΔT _J	Temperature Coefficient of Breakdown Voltage	$V_{GE} = 0 V, I_C = 1 mA$		0.6		V/°C
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0 V$			250	uA
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0 V$			± 100	nA
On Chai	acteristics					
V _{GE(th)}	G-E Threshold Voltage	$Ic = 50 \text{ mA}, V_{CE} = V_{GE}$	5.0	6.0	8.5	V
	Collector to Emitter	$I_{\rm C} = 50 \text{ A}, V_{\rm GE} = 15 \text{ V}$		2.2	2.8	V
V _{CE(sat)}	Saturation Voltage	I _C = 80 A, V _{GE} = 15 V		2.5		V
	c Characteristics					
C _{ies}	Input Capacitance	V _{CE} =30 V, V _{GE} = 0 V,		3311		pF
C _{oes}	Output Capacitance	$v_{CE}=30 v_{,} v_{GE}=0 v_{,}$ f = 1 MHz		399		pF
C _{res}	Reverse Transfer Capacitance			139		pF
t _{d(on)}	ng Characteristics Turn-On Delay Time Rise Time	-		26 89		ns ns
t _{d(on)}		4		-		ns
t _r	Turn-Off Delay Time	$V_{CC} = 300 \text{ V}, \text{ I}_{C} = 50 \text{ A},$ $R_{G} = 5.9 \Omega, V_{GE} = 15 \text{ V},$		66	100	ns
t _{d(off)} t _f	Fall Time			118	200	ns
ч E _{on}	Turn-On Switching Loss	Inductive Load, $T_c = 25^{\circ}C$		1.68		mJ
∟ _{on} E _{off}	Turn-Off Switching Loss			1.03		mJ
E _{ts}	Total Switching Loss	-		2.71	3.8	mJ
t _{d(on)}	Turn-On Delay Time			28		ns
t _r	Rise Time	-		91		ns
t _{d(off)}	Turn-Off Delay Time	V _{CC} = 300 V, I _C = 50 A,		68	110	ns
t _f	Fall Time	$R_{G} = 5.9 \Omega, V_{GE} = 15 V,$		261	400	ns
E _{on}	Turn-On Switching Loss	Inductive Load, $T_C = 125^{\circ}C$		1.7		mJ
E _{off}	Turn-Off Switching Loss	Ĭ		2.31		mJ
E _{ts}	Total Switching Loss			4.01	5.62	mJ
T _{sc}	Short Circuit Withstand Time	V _{CC} = 300 V, V _{GE} = 15 V @ T _C = 100°C	10			us
Q _q	Total Gate Charge	Ŭ		145	210	nC
Q _{ge}	Gate-Emitter Charge	$V_{CE} = 300 \text{ V}, I_C = 50 \text{ A},$		25	35	nC
Q _{gc}	Gate-Collector Charge	V _{GE} = 15 V		70	100	nC
L _e	Internal Emitter Inductance	Measured 5mm from PKG		18		nH


Electrical Characteristics of DIODE $T_{C} = 25^{\circ}C$ unless otherwise noted


Symbol	Parameter Test Conditions		tions	Min.	Тур.	Max.	Unit
V _{FM} I	Diode Forward Voltage	$I_{\rm F} = 30 \text{ A} \qquad \qquad \frac{T_{\rm C} = 25^{\circ}\text{C}}{T_{\rm C} = 100^{\circ}\text{C}}$	$T_{C} = 25^{\circ}C$		1.9	2.8	V
				1.8		v	
t _{rr} Diode Reverse Recovery Time		$T_{C} = 25^{\circ}C$		70	100	2	
t _{rr}	Didde Reverse Recovery Time	$T_{\rm C} = 1$	$T_{\rm C} = 100^{\circ}{\rm C}$		140		ns
1	Irr Diode Peak Reverse Recovery Current	I _F = 30 A,	$T_{C} = 25^{\circ}C$		6	7.8	~
rr		di _F /dt=200 A/us	$T_{\rm C} = 100^{\circ}{\rm C}$		8		A
Q _{rr}	Diode Reverse Recovery Charge		$T_{\rm C} = 25^{\circ}{\rm C}$		200	360	nC
			$T_C = 100^{\circ}C$		580		nc

SGL50N60RUFD — 600 V, 50 A Short Circuit Rated IGBT

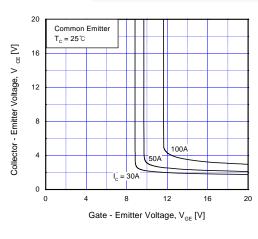


Fig 5. Saturation Voltage vs. $\rm V_{GE}$

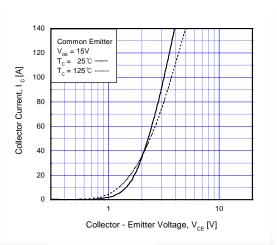
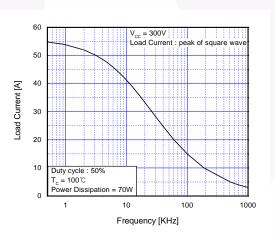
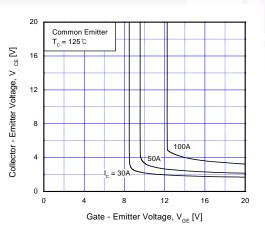
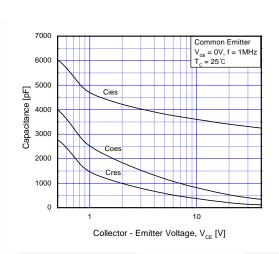
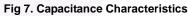
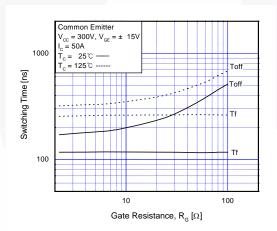
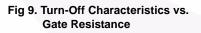




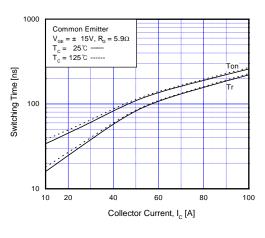
Fig 2. Typical Saturation Voltage Characteristics

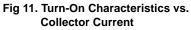


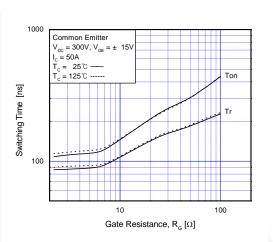


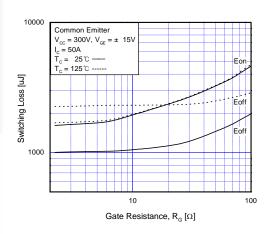
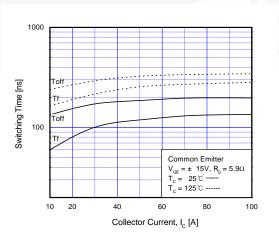
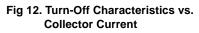
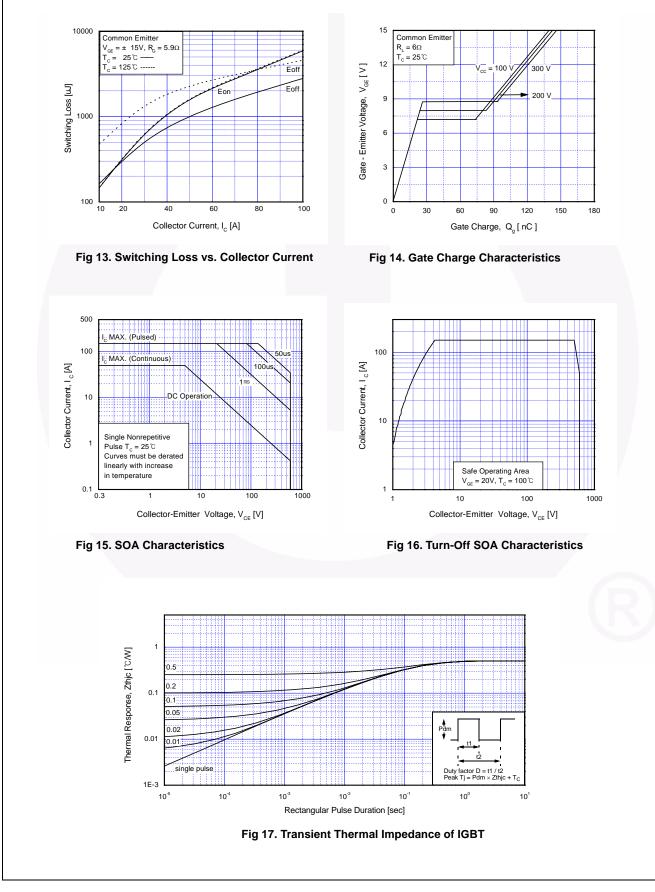


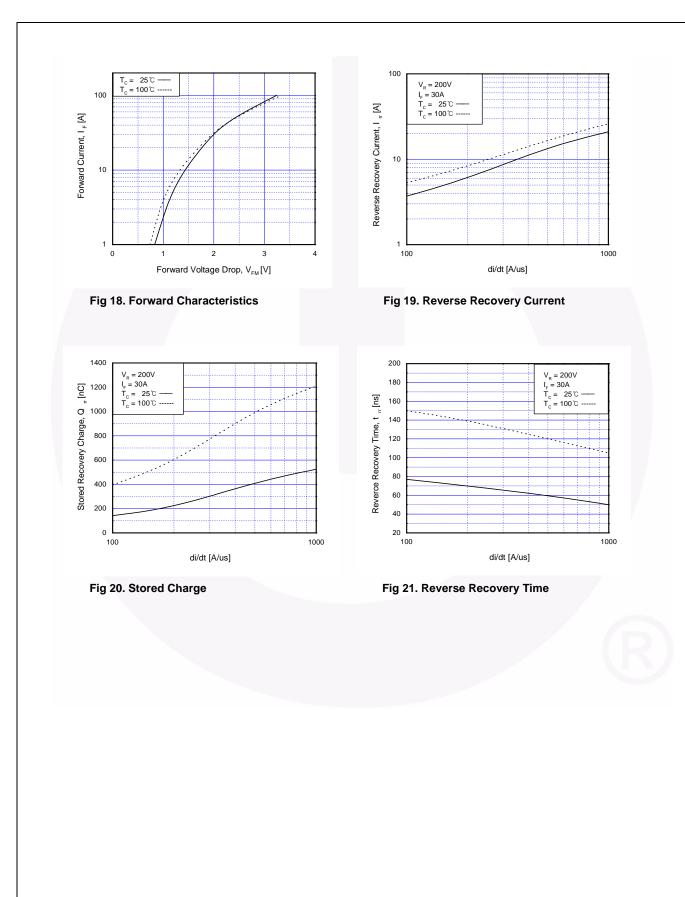

©1999 Fairchild Semiconductor Corporation SGL50N60RUFD Rev. C1

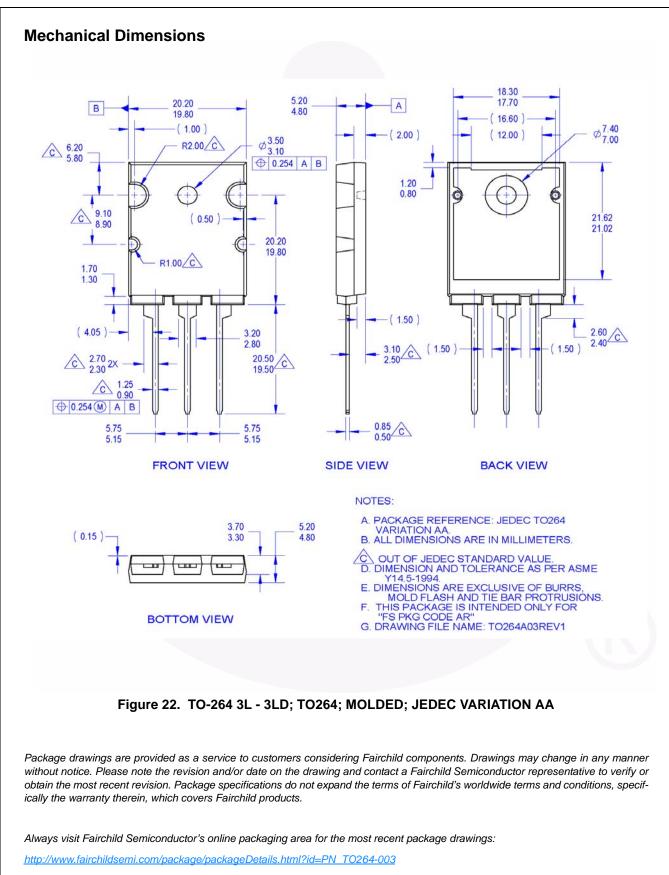

SGL50N60RUFD — 600 V, 50 A Short Circuit Rated IGBT






Fig 10. Switching Loss vs. Gate Resistance



SGL50N60RUFD — 600 V, 50 A Short Circuit Rated IGBT

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ AX-CAF BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK[®] EfficentMax™ ESBC™

G*max*™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Louder and Better™ MegaBuck™ MIČROCOUPLER™ MicroFET⁺ MicroPak™ MicroPak2™ MillerDrive™ Fairchild Semiconductor® MotionMax™ mWSaver[®] FACT Quiet Series™ OptoHiT™ **OPTOLOGIC[®] OPTOPLANAR[®]**

F-PFS™

FRFET®

GreenBridge™

Green FPS™

Global Power ResourceSM

Green FPS™ e-Series™

® PowerTrench[®] PowerXS™ Programmable Active Droop™ **QFĔT**® QS™ Quiet Series™ RapidConfigure™ тм Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START Solutions for Your Success™ SPM[®] STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™

Sync-Lock™ **SYSTEM**®' TinyBoost TinyBuck® TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT[®]* µSerDes™ $\mu_{_{
m Ser}}$ UHC® Ultra FRFET™

UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

R

Fairchild®

FACT®

FPS™

FAST®

FastvCore™

FETBench™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time withou notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		