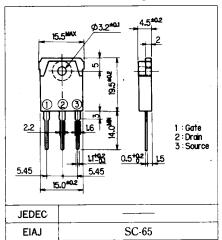
2SK955

N-CHANNEL SILICON POWER MOS-FET

F-I SERIES

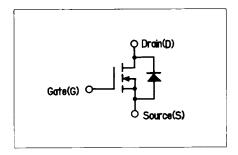

■Features

- High speed switching
- Low on-resistance
- No secondary breakdown
- Low driving power
- High voltage

■Applications

- Switching regulators
- UPS
- DC-DC converters
- General purpose power amplifier

■Outline Drawings:

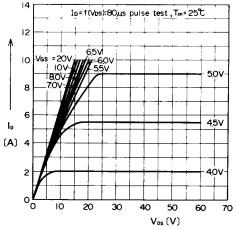


■Max. Ratings and Characteristics

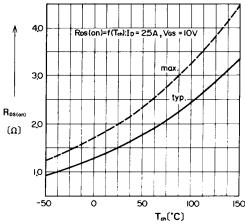
● Absolute Maximum Ratings(Tc=25°C)

Items	Symbols	Ratings	Units
Drain-source voltage	V_{DSS}	800	V
Continuous drain current	I_D	5	A
Pulsed drain current	I _{D(puls)}	20	A
Continuous reverse drain current	I _{DR}	5	Α
Gate-source peak voltage	V _{GSS}	±20	V
Max. power dissipation	P_D	125	W
Operating and storage	Tcn	150	°C
temperature range	T _{stg}	-55~+150	°C

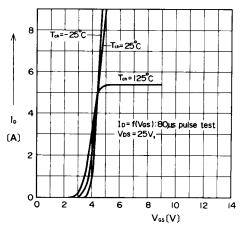
■ Equivalent Circuit Schematic:

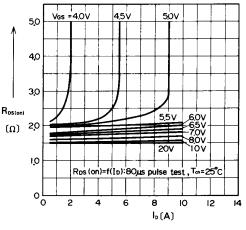

● Electrical Characteristics (Tc = 25°C)

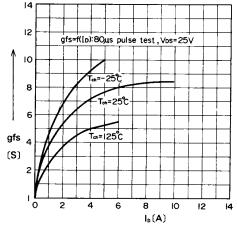
Items	Symbols	Test Conditions	Min.	Typ.	Max.	Units
Drain-source breakdown voltage	V _{(BR)DSS}	$I_D = 1mA$ $V_{GS} = 0V$	800			V
Gate threshold voltage	V _{GS(th)}	$I_D = 10 \text{mA}$ $V_{DS} = V_{GS}$	2.1	3.0	4.0	V
Zero gate vlotage drain current	IDSS	$V_{DS} = 800V$ $V_{GS} = 0V$ $T_{ch} = 25^{\circ}C$		10	500	μA
Gate-source leakage current	I _{GSS}	$V_{GS} = \pm 20V V_{DS} = 0V$		10	100	nA
Drain-source on-stage resistance	R _{DS(on)}	$I_D = 2.5 A$ $V_{GS} = 10 V$		1.5	2.0	Ω
Forward transconductance	grs	$I_{\rm D} = 2.5 \text{A} V_{\rm DS} = 25 \text{V}$	3.0	6.0		S
Input capacitance	Ciss	$V_{DS} = 25V$		1500	2400	
Output capacitance	Coss	$V_{GS} = 0V$		150	240	pF
Reverse transfer capacitance	Crss	f = 1MHz		50	80	
	ton	$V_{cc} = 30V R_{GS} = 50\Omega$		110	170	
Switching time $(t_{off} = t_{d(off)} + t_f)$ t_f	td(off)	$I_D = 2.5A$		300	450	ns
	$V_{GS}=10V$		120	180		
Diode foward on-voltage	V _{SD}	$I_F = 2 \times I_{DR}$ $V_{GS} = 0V$ $T_{ch} = 25^{\circ}C$		1.0	1.5	V
Reverse recovery time	trr	$I_F = I_{DR} d_i/d_t = 100 \text{ A}/\mu \text{s} T_{ch} = 25^{\circ}\text{C}$,	500		ns

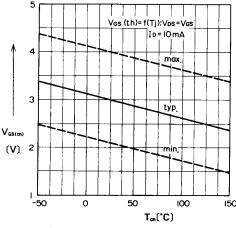

●Thermal Characteristics

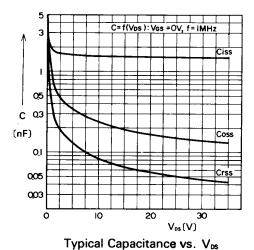
Items	Symbols	Test Conditions	Min.	Тур.	Max.	Units
The second Project of the second	R _{th(ch-a)}	channel to air			35	°C/W
Thermal Resistance $R_{th(ch-c)}$	R _{th(ch-c)}	channel to case			1.0	°C/W

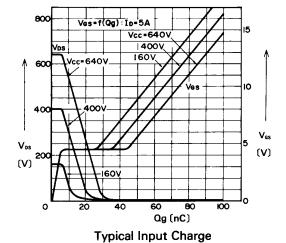

■Characteristics

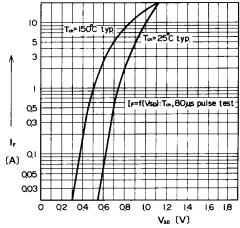

Typical Output Characteristics

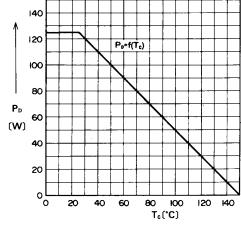

On State Resistance vs. Tch


Typical Transfer Characteristics

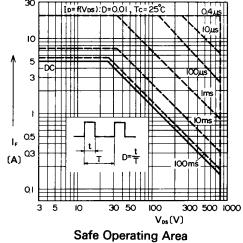

Typical Drain-Source on State Resistance vs. Ip




Typical Forward Transconductance vs. Ip



Gate Threshold Voltage vs Tch



Allowable Power Dissipation vs. Tc

